Glutamate mediates an excitatory influence of the paraventricular hypothalamic nucleus on the dorsal motor nucleus of the vagus.
نویسندگان
چکیده
Data have shown that the paraventricular nucleus of the hypothalamus (PVN) and the dorsal motor nucleus of the vagus (DMNV) play important roles in the regulation of gastrointestinal function and eating behavior. Anatomical studies have demonstrated direct projections from the PVN to the DMNV and physiological studies showed that the DMNV mediates many of the effects of PVN stimulation and electrical current stimulation of the PVN excites a subset of DMNV neurons. The aim of this study was to characterize the role of glutamate receptors in the excitatory influence of the PVN on gut-related DMNV neurons. Using single-cell recording techniques, we determined the effects of kynurenic acid, 6-cyano-7-nitroquinoxalene-2,3-dione (CNQX), and DL-2-amino-5-phosphonopentanoic acid (DL-AP5) on the increase in firing rate due to electrical current stimulation of the PVN. In initial experiments, we studied 24 DMNV neurons excited by electrical current stimulation of the PVN. Kynurenic acid, a broad-spectrum glutamate receptor antagonist, prevented the PVN effect in 22 neurons and significantly attenuated the effect in the other cells. Nine of these neurons demonstrated an inhibition in firing rate with PVN stimulation after pretreatment with kynurenic acid. In a separate group of 12 neurons, we determined the effects of CNQX (1.2 nmol) injected into the DMNV. This AMPA receptor antagonist completely blocked the excitatory response to PVN stimulation of six DMNV neurons and significantly attenuated the response of the other six DMNV neurons. The addition of 1.2 nmol DL-AP5, a N-methyl-D-aspartate (NMDA) receptor antagonist, further attenuated the response to PVN stimulation in four of the five DMNV neurons that were still excited after CNQX treatment. The fifth neuron demonstrated PVN- induced inhibition of firing rate after treatment with CNQX and DL-AP5. In a separate group of 11 DMNV neurons excited by electrical stimulation of the PVN, DL-AP5 partially attenuated the excitatory responses of only four DMNV neurons and did not block the excitation of any cells. The mean latency (14 neurons tested) from the PVN to the DMNV was 37.71 +/- 2.40 (SE) ms. Monosynaptic action potentials and excitatory postsynaptic potentials were demonstrated in three DMNV neurons by intracellular recording. Our results indicate that glutamate released from PVN neurons projecting to the DMNV excite the gut-related vagal motor neurons by acting predominantly on the AMPA receptor. The NMDA receptor plays only a minor role in the excitatory effect.
منابع مشابه
The effect of desmopressin infusion into dorsal raphe nucleus on pain modulation and morphine analgesia in rats tail flick reflex
Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VA) increases pain threshold. The dorsal raphe nucleus (DRN) is an important nucleus in pain modulation. Anatomical studies have shown that DRN receives vasopressinergic fibers originating in the hypothalamic paraventricular nucleus. The aim of the present study was to examine the effects of intra-DRN injection of de...
متن کاملThe effect of desmopressin infusion into dorsal raphe nucleus on pain modulation and morphine analgesia in rats tail flick reflex
Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VA) increases pain threshold. The dorsal raphe nucleus (DRN) is an important nucleus in pain modulation. Anatomical studies have shown that DRN receives vasopressinergic fibers originating in the hypothalamic paraventricular nucleus. The aim of the present study was to examine the effects of intra-DRN injection of de...
متن کاملOrexins in rat dorsal motor nucleus of the vagus potently stimulate gastric motor function.
Orexins regulate food intake, arousal, and the sleep-wake cycle. They are synthesized by neurons in the lateral hypothalamus and project to autonomic areas in the hindbrain. Orexin A applied to the dorsal surface of the medulla stimulates gastric acid secretion via a vagally mediated pathway. We tested the hypothesis that orexins in the dorsal motor nucleus (DMN) of the vagus regulate gastric m...
متن کاملCardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla
Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostr...
متن کاملP146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress
Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 88 1 شماره
صفحات -
تاریخ انتشار 2002